![]() |
.....e comunque andiamo piano e ci fermeremo in tempo ;)
|
come si fa a rispondere?
|
Eccomi ragazzi!
Sono CTU per i tribunali anche proprio nel ramo dei sinistri stradali e Vi confermo che la formula accademica è quella che è stata più volte indicata: s = v2 / (2*g*f) ora il coefficiente di attrito (f) trovatelo dove meglio vi pare secondo se dovete fare il consulente di parte (difendere chi ha fatto l'incidente) o il CTU (in questo caso siete l'estensione tecnica del giudice o del PM). In ogni caso rimangono calcoli prettamente teorici in quanto tute le considerazioni sono affette da errori quali la tipologia di pneumatico, manutenzione sospensioni e freni e tantissime altre variabili. Poi nella realtà non capita mai solo di calcolare la distanza di frenatura ma, al contrario, si deve risalire alla velocità al momento ante-urto, cioè un attimo prima dell'urto (se urto c'è stato perchè anche questo ha la sua importanza ai fini assicurativi). Ancora: nella realtà ci sono condizioni complesse e articolate (tipo tre auto coinvolte, una capottata le altre entrate in collisione tra loro...) e in certi casi si risale alla velocità iniziale considerando le deformazioni derivanti dall'urto. però sono concetti abbastanza pesanti da assimilare e ancora di più da spiegare. Un caro saluto a tutti ragazzi! |
Quote:
guarda che la normativa ti da una distanza di visibilità per l'arresto, non la distanza di arresto. Sono due cose ben definite e differenti |
I risultati
Tanto per cominciare, grazie a tutti quelli che hanno votato! :D
Il sondaggio, pur basato su un campione molto ridotto, è servito per farsi un'idea approssimativa del nostro grado di conoscenza degli spazi di frenata delle nostre moto. Le risposte corrette sono le seguenti: a 50 km/h = 10 metriOvviamente si tratta di spazi d'arresto indicativi, variabili secondo il veicolo e le circostanze, ma in linea di massima la maggior parte delle auto e delle moto oggi in commercio ottiene valori piuttosto simili a questi. Mediamente, circa i due terzi dei votanti hanno risposto correttamente, mentre i rimanenti hanno sbagliato o si sono astenuti. Trovo molto interessante il fatto che la risposta relativa ai 50 km/h, sia stata azzeccata solo dal 42% dei votanti; molto probabilmente, ciò è avvenuto perché tale velocità era l'unica per cui la risposta corretta era quella di valore maggiore (le opzioni erano 10 e 15 m); il che mi spinge a credere che, dei due terzi che hanno votato bene, una discreta percentuale abbia scelto il valore superiore per prudenza più che per effettiva conoscenza. Comunque sia, il punto è che almeno un terzo dei votanti ha sottostimato gli spazi reali di frenata. Ora, è vero che mentre uno guida non sta certo a misurare i metri che lo separano da chi gli sta davanti. Ma è altrettanto vero che dovrebbe cercare di farsi un'idea il più possibile precisa di questo spazio, e dello spazio necessario per fermarsi, a qualsiasi velocità e in qualunque condizione. A tale scopo, uso da tempo e consiglio a tutti una formula molto semplice: s = (v/10)^2*cdove v è la velocità espressa in km/h e c è una costante, che per le moto e le auto di fascia medio-alta può essere considerata pari a 0,4. Tale valore è stato ricavato empiricamente, ed è quello che più approssima gli spazi di frenata rilevabili attualmente nella maggior parte delle prove su strada di moto (e auto) di livello medio-alto riportate nelle riviste che pubblicano tale dato. E' con tale formula che ho calcolato i risultati del test. Essa non è altro che una versione ulteriormente semplificata della ormai arcinota formula classica in uso ovunque e citata anche nel thread: s = v^2/(2gk)con v = velocità in m/s, g = accelerazione gravitazionale (9,81 m/s^2) e k = coefficiente d'attrito. Per la cronaca, i valori del test si ottengono con k ≈ 0,9831. La formula è abbastanza semplice da consentire il calcolo a mente in ogni momento, ma in realtà non serve fare calcoli mentre si guida, perché basta mandare a memoria i valori relativi ad alcune velocità indicative (ad esempio, quelle del sondaggio) per costruirsi una griglia mentale adatta in ogni circostanza. Inoltre, variando opportunamente la costante c (aumentandola si allunga lo spazio di frenata risultante) si può costruire facilmente una griglia per la frenata sul bagnato o su qualsiasi altra superficie. |
come parla bene quest'uomo....
|
Predica bene, ma razzola male. E poi è una donna.
|
si...ma....ok io conosco a memoria tutto gli spazi di arresto della mia moto...bello...però che me ne faccio? nel senso...che mi serve sapere che a 50 km/h mi servono 10 metri per fermarmi SE NON SONO IN GRADO DI STIMARE I 10 METRI?
e io non sono capace...no so voi... per non parlare di velocità più elevate..che so 150Km/h....a 150 Km/h dovrei essere in grado di valutare 90 metri di spazio? e come si fa?? io penso che sia molto più utile tenere conto del TEMPO...più che dello spazio! Il tempo lo si riesce a stimare...quello so come si fa...si conta 1001, 1002, 1003... |
Conviene sforzarsi di imparare.
Il tempo va bene per misurare i distacchi in gara, ma per la distanza di sicurezza non funziona, perché fa variare la distanza in proporzione alla velocità, mentre la frenata si allunga con il suo quadrato. |
velocità = Spazio x tempo
non mi pare che sia diverso considerare il tempo o lo spazio.... se io devo tenere la "distanza di sicurezza"....mi devo domandare ...che cosa è la distanza di sicurezza? il manuale recita..."è la distanza che si percorre ad una data velocità in UN SECONDO"... non è più semplice considerare sempre e solo "UN SECONDO" anziché tradurlo in metri? (ovviamente IMHO) |
|
cavolo, ho sovrastimato i 50 km/h....
vabbè son bradipa, questa è l'ovvia conseguenza notavo che, più si alza la velocità, percentualmente minore è il numero di coloro che indicano la distanza sbagliata.... quindi gli incidenti ad alte velocità dovrebbero essere meno frequenti di quelli a basse... e invece non pare essere così.... ma chi è che va in giro a 200/250 km/h???? :rolleyes: |
Quote:
|
gli incidenti più numerosi invece avvengono proprio nei centri urbani..
squalo se non valuti le distanze allora stai largo che non sbagli :lol: il problema in italia è che se mantieni la distanza di sicurezza di sicuro qlcn ci si infila!:confused: |
una stima (non in metri ma "a sensazione di spazio") della distanza la si ha guardando la linea di mezzeria tratteggiata, se c'e' (la spaziatura non e' uniforme fra le diverse strade quindi non c'e' una regola, io vado ad occhio)
oppure guardando i catarifrangenti laterali, se ci sono (idem). oppure, a sentimento. comunque, meglio sottostimarla (credere che siano 15 metri quando in realta' sono 20) che sovrastimarla (credere che siano 50 metri quando in realta' ne sono 30). peccato che quando in moto (anche in auto) rispetto la distanza, c'e' sempre qualche pirla che o mi lampeggia da dietro (anche se sono a destra della corsia piu' a destra) o cerca di sorpassarmi per forza. ma questo e' un altro discorso. l'utilita' di questo tread secondo me non sta nella misura degli spazi necessari, quello e' un giochino che si risolve cercando su internet, ma la presa di coscienza che il problema di fermarsi, quando si presenta all'improvviso, puo' avere una soluzione non proprio soddisfacente dal punto di vista della sicurezza. (per non usare frasi piu' dirette, da menagramo) grazie Wotan. |
Quote:
se devo fare un sorpasso valuto "se ci riesco" nella "finestra temporale" in cui ho la strada libera...non in quanti metri compio la manovra...tanto per far eun esempio... ;) |
v = s/t, ma lo spazio di frenata ragiona in termini di v^2. Questo vuol dire che se si vuole, si può anche contare i secondi, ma che il numero di secondi deve aumentare all'aumentare della velocità.
Torniamo ai numeri del test. Se usiamo lo stesso "tempo di sicurezza" a tutte le velocità, per esempio 2 s, succede quanto segue: a 50 km/h = 10 metri -> distanza percorsa in 2s = 27,78Come si vede, questo modo di calcolare la distanza di sicurezza dà risultati troppo elevati a bassa velocità e troppo bassi alle velocità superiori. Se si vuole calcolare la distanza di sicurezza in secondi, è quindi necessario accrescere il tempo all'aumentare della velocità. I valori esatti per i dati del tes sono i seguenti: a 50 km/h = 10 metri = 0,72 sA tutto questo ovviamente va aggiunto il tempo di reazione, pari ad almeno 1s. Possiamo quindi immaginare una tabella ultrasemplificata per calcolare la distanza di sicurezza in secondi, comprensiva del tempo di reazione, che potrebbe essere la seguente: fino a 50 km/h = 2 sOvviamente, stiamo sempre parlando di strada asfaltata e asciutta. |
Quote:
Quote:
Quote:
|
Quote:
Quote:
|
Quote:
Mi permetto di ricapitolare: Tempo di reazione: il tempo che intercorre tra quando il pilota "vede" l'ostacolo/realizza la necessità di frenare e quando effettivamente inizia a tirare la leva/premere il pedale.. lo "standard" di solito viene calcolato in 1", in alcuni documenti linkati più sopra viene stimato più alto (1,5/1,8") e variabile a seconda della velocità e del contesto. Spazio di frenatura: quello oggetto del sondaggio.. "quanto spazio ci vuole" per fermarsi alle varie velocità ed in condizioni ottimali di aderenza da quando si inizia a premere il pedale. Spazio totale di arresto: lo spazio percorso durante il tempo di reazione (quindi metri/secondo x tdr) + lo spazio di frenatura. Quindi la "distanza di sicurezza" non dovrebbe essere altro che lo spazio percorso durante il tdr.. questo perchè si presume che il veicolo che precede abbia -grossomodo- gli stessi spazi di frenatura del nostro*.. quindi "contare i secondi" dal veicolo che ci precede è IMHO un buon metodo "empirico". * non entriamo nel merito dei diversi spazi di frenata, "ovviamente" se sono a 80 km/h con una Uno a "due secondi" dietro una Ferrari con i freni in carbonio, e quella inchioda... probabilmente la tampono.. |
| Tutti gli orari sono GMT +2. Attualmente sono le 02:00. |
Powered by vBulletin versione 3.8.4
Copyright ©: 2000 - 2026, Jelsoft Enterprises Ltd.
Traduzione italiana Team: vBulletin-italia.it
www.quellidellelica.com ©